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A numerical and analytical investigation is made into the response of a fluid when a
two-dimensional structure is forced to move in a prescribed fashion. The structure is
constructed in such a way that it supports a trapped mode at one particular frequency.
The fluid motion is assumed to be small and the time-domain equations for linear
water-wave theory are solved numerically. In addition, the asymptotic behaviour
of the resulting velocity potential is determined analytically from the relationship
between the time- and frequency-domain solutions. The trapping structure has two
distinct surface-piercing elements and the trapped mode exhibits a vertical ‘pumping’
motion of the fluid between the elements. When the structure is forced to oscillate
at the trapped-mode frequency an oscillation which grows in time but decays in
space is observed. An oscillatory forcing at a frequency different from that of the
trapped mode produces bounded oscillations at both the forcing and the trapped-
mode frequency. A transient forcing also gives rise to a localized oscillation at the
trapped-mode frequency which does not decay with time. Where possible, comparisons
are made between the numerical and asymptotic solutions and good agreement is
observed. The calculations described above are contrasted with the results from a
similar forcing of a pair of semicircular cylinders which intersect the free surface at
the same points as the trapping structure. For this second geometry no localized or
unbounded oscillations are observed. The trapping structure is then given a sequence
of perturbations which transform it into the two semicircular cylinders and the time-
domain equations solved for a transient forcing of each structural geometry in the
sequence. For small perturbations of the trapping structure, localized oscillations
are produced which have a frequency close to that of the trapped mode but with
amplitude that decays slowly with time. Estimates of the frequency and the rate of
decay of the oscillation are made from the time-domain calculations. These values
correspond to the real and imaginary parts of a pole in the complex force coefficient
associated with a frequency-domain potential. An estimate of the position of this pole
is obtained from calculations of the added mass and damping for the structure and
shows good agreement with the time-domain results. Further time-domain calculations
for a different trapping structure with more widely spaced elements show a number
of interesting features. In particular, a transient forcing leads to persistent oscillations
at two distinct frequencies, suggesting that there is either a second trapped mode,
or a very lightly damped near-trapped mode. In addition a highly damped pumping
mode is identified.
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1. Introduction
Trapped water waves are free oscillations of an unbounded fluid with a free surface,

for which the fluid motion is essentially confined to the vicinity of a fixed structure.
Thus the energy of the motion is finite and there is no radiation of energy to infinity.
Such modes are non-trivial solutions of the linearized water-wave problem in the
frequency domain. They satisfy homogeneous boundary conditions and contain no
waves in the far field (hence there is an absence of any forcing either from incident
waves or from an imposed motion of the structure). The non-existence of a trapped-
mode solution to the homogeneous problem at a particular frequency implies the
uniqueness of the solution to a forcing problem at that frequency. Over a period of
fifty years much work has gone into establishing uniqueness theorems for particular
structural geometries (see for example John 1950 and Simon & Ursell 1984) but no
general uniqueness proof has been found. The reason for this is now apparent as
it has been discovered recently (McIver 1996) that trapped modes exist and may
be supported at specific frequencies by certain ‘trapping structures’ with particular
geometries. Surface-piercing and submerged trapping structures have been constructed
in both the two- and three- dimensional water-wave problems (see McIver & Porter
2002 and the references therein).

The existence of a trapped mode at a particular frequency implies the non-
uniqueness, or even non-existence, of the solution to the scattering or radiation
problem at that frequency (McIver 1997). Furthermore the velocity potentials for cer-
tain forcing problems are singular at the trapped-mode frequency. These singularities
in the potential manifest themselves as singular behaviour of hydrodynamic coeffi-
cients such as the added mass, and a detailed discussion of this and the implications
for numerical calculations are given by Newman (1999) and McIver (2003). This
paper is concerned mainly with the implications of the existence of trapped modes
for the linearized water-wave problem in the time domain, but these connections with
the frequency domain are also explored further.

Detailed analyses of particular time-domain water-wave problems are relatively
rare. Exact solutions for the generation of waves by a moving paddle and by a moving
vertical cylinder were obtained by Kennard (1949) and McIver (1994), respectively.
The decay of the motion of a floating body was studied by Ursell (1964) and Maskell
& Ursell (1970) for the vertical displacement of a half-immersed horizontal cylinder
and by Smith (1982) for a rolling strip. On the other hand, many researchers have
investigated the interaction between waves and structures in the time domain using
numerical methods. Many of the methods have been developed for the nonlinear
problem, although such methods are easily adapted to the linear problem. Recent
papers on the forced vertical motion of a structure, which is investigated here, include
those of Isaacson & Ng (1993) and Maiti & Sen (2001b).

The present work is concerned with the time-domain solution of the two-
dimensional problem for the motion of an inviscid fluid around a structure that
is constructed to support a trapped mode with a particular frequency of oscillation.
Each ‘trapping structure’ has two distinct surface-piercing elements and most of the
fluid motion associated with the trapped mode occurs between the two elements.
To simplify matters, rather than allow the structure to respond freely to an initial
disturbance, a variety of prescribed vertical motions are imposed, and a mixture of
asymptotic and numerical methods is used to demonstrate how the existence of the
trapped mode manifests itself. A typical scenario is as follows. Suppose that the struc-
ture is initially at rest and is then displaced in some prescribed way before being
brought back to rest. In the linearized problem the fluid motion generated may
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be thought of as an integral over components with all frequencies. The motions at
frequencies other than the trapped-mode frequency ω0 will die away as a result of
wave radiation to infinity. However, a component of the motion at the trapped-mode
frequency is not able to radiate energy to infinity and will persist with constant
amplitude for all time, even though the structure itself is brought to rest. Other
scenarios investigated here are the forced oscillation of the structure at the trapped-
mode frequency ω0, and the forced oscillation at a frequency σ �= ω0.

The plan of the paper is as follows. The time domain problem for the forced vertical
motion of a structure in water is formulated in § 2, the large-time asymptotics of the
solution to this problem are described in § 3 (under the assumption that the structure
supports a single trapped mode), and a numerical method for the solution of the time-
domain problem is outlined in § 4. The first set of numerical results presented and
discussed in § 5 is for a trapping structure that supports a trapped fluid motion
between the two elements that is mainly a vertical or ‘pumping’ oscillation. The
trapped mode is found to be excited by a variety of forcings and, where possible,
comparison is made with the large-time asymptotics. In § 6 perturbations of a trapping
structure, to structures that no longer support trapped modes, are discussed and it
is demonstrated how the decay of a fluid motion around such structures can be
described in terms of frequency-domain quantities. In § 7, computations are presented
for a trapping structure made up of two more widely spaced elements for which the
associated trapped mode has two free-surface nodes between the elements. It is found
that there is an additional mode of fluid oscillation that is either a second trapped
mode, or a very lightly damped near-trapped mode.

2. Formulation
Attention is restricted to two dimensions and Cartesian coordinates (x, z) are chosen

with z directed vertically upwards and with the origin in the mean free surface. The
fluid domain is bounded below by a flat rigid bed at z = −h and extends to infinity
in both horizontal directions. The fluid is assumed to be inviscid and incompressible
and the motion to be irrotational so that it may be described by a velocity potential
Φ(x, z, t) that is a solution of Laplace’s equation

∇2Φ = 0 in the fluid (2.1)

and also the bed condition

∂Φ

∂z
= 0 on z = −h. (2.2)

For a structure Γ that is forced to heave with a vertical component of velocity V (t),
the boundary condition to be applied on Γ is

∂Φ

∂n
= V (t)nz (2.3)

where n is a coordinate measured normal to Γ and nz is the z component of the
unit normal. The free-surface elevation of the fluid η(x, t) is related to Φ through the
linearized free-surface conditions

∂Φ

∂t
= −gη on z = 0 (2.4)
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and
∂η

∂t
=

∂Φ

∂z
on z = 0. (2.5)

The motion will be started from rest subject to the initial conditions

Φ(x, 0, 0) =
∂Φ

∂t
(x, 0, 0) = 0 (2.6)

and for any fixed time

∇Φ → 0 as |x| → ∞. (2.7)

3. Asymptotic solution for large time
The solution of the time-domain problem (2.1)–(2.7) may be obtained formally with

the use of the Laplace transform. The transform of the time-domain potential Φ is
defined by

φ̂(x, z, s) =

∫ ∞

0

Φ(x, z, t) e−st dt, Re s > 0 (3.1)

and the inverse transform by

Φ(x, z, t) =
1

2πi

∫ γ+i∞

γ −i∞
φ̂(x, z, s) est ds (3.2)

where, in the usual way, the real number γ is chosen to ensure that the contour of
integration is taken to the right of any poles in the integrand. The Laplace transform
of the velocity V (t) is written v̂(s). Introduction of v(ω) = v̂(−iω) and φ(x, z, ω),
defined so that

φ̂(x, z, −iω) = v(ω)φ(x, z, ω), (3.3)

allows (3.2) to be rewritten as

Φ(x, z, t) =
1

2π

∫ ∞

−∞
	 v(ω)φ(x, z, ω) e−iωt dω. (3.4)

From the properties v(−ω) = v(ω) and φ(x, z, −ω) = φ(x, z, ω) of the Fourier
transform (the overbar denotes complex conjugate), (3.4) may be written alternatively
as

Φ(x, z, t) =
1

π
Re

∫ ∞

0

	 v(ω)φ(x, z, ω) e−iωt dω, (3.5)

where the paths of integration in (3.4) and (3.5) are taken over any poles in the
integrand.

When ω is real the function φ(x, z, ω) is just the standard frequency-domain heave
potential, as it is a solution of the Laplace equation which satisfies the body boundary
condition

∂φ

∂n
= nz on Γ, (3.6)

the free-surface condition
∂φ

∂n
=

ω2

g
φ on z = 0, (3.7)

a radiation condition, and has zero normal derivative on z = −h. Causality means
that Φ =0 for t < 0 and so there are no poles of φ in Im ω > 0. Any pole of
φ on Im ω = 0 corresponds to a trapped mode for the particular structure Γ . It
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will be assumed in the following asymptotic analysis that for each trapping structure
Γ there is exactly one trapped mode so that there are two poles of φ at the real
values ω = ±ω0, say. The assumption of a single trapped mode is consistent with the
numerical results described in § 5. (The analysis can be extended in a straightforward
way to include further trapped modes at other frequencies.) The trapped mode is
described by a frequency-domain potential φ0(x, z), which is a non-trivial solution of
the homogeneous frequency-domain problem with ω = ω0 and which satisfies φ0 → 0
as |x| → ∞.

In the time-domain problem the forcing velocity used has the form

V (t) = a cos σ t + b sin σ t + c cosω0t + d sin ω0t + E(t), (3.8)

where all the quantities in (3.8) are real, σ > 0, σ �= ω0, and E(t) → 0 as t → ∞. This
means that the motion of the body is totally prescribed and it is the response of the
fluid that is of interest. The first two terms in (3.8) represent an oscillatory forcing
at a frequency different from that of the trapped mode. The third and fourth terms
represent a forcing at the trapped-mode frequency, and the final term represents a
transient motion of the body. The effect of each of these types of forcing will be
discussed in § 5.

The transform of the prescribed velocity in (3.8) is

v(ω) =
iωa − σb

ω2 − σ 2
+

iωc − ω0d

ω2 − ω2
0

+ e(ω), (3.9)

where

e(ω) =

∫ ∞

0

E(t) eiωt dt, (3.10)

and so v(ω) has simple poles at ω = ±σ, ±ω0. Thus the integrand appearing in (3.5)
has terms with a simple pole at ω = σ and, because there is a pole in φ at ω = ω0,
other terms with both simple and double poles at ω = ω0. When the contour of
integration is closed around the poles in the lower-half of the complex-ω plane it
follows that

Φ(x, z, t) ∼ −2 Re

{
i

∑
residues

v(ω)φ(x, z, ω) e−iωt

}
as t → ∞, (3.11)

where the sum is taken over the residues of the poles of the integrand on the real axis
in (3.5). (It may be shown that there is no contribution to Φ at leading order from
either ω = 0 or ω → ∞.)

It is shown in the Appendix that the heave potential has the form

φ(x, z, ω) =
gAφ0(x, z)

ω2 − ω2
0

+ φ1(x, z) + O(ω − ω0) as ω → ω0 (3.12)

where

A =

−
∫

Γ

φ0(ξ, η) nη ds∫
F

[φ0(ξ, 0)]2 dξ

=

−
∫ ∞

−∞
φ0(ξ, −h) dξ∫

F

[φ0(ξ, 0)]2 dξ

, (3.13)

s is arclength, F denotes the mean free surface and φ1 satisfies Laplace’s equation, the
body boundary condition (3.6), a radiation condition, a forced free-surface boundary
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condition
ω2

0

g
φ1 − ∂φ1

∂z
= −Aφ0(x, 0) on z = 0, (3.14)

and has zero normal derivative on z = −h. The Fredholm Alternative may be used
to show that φ1 exists, and uniqueness is ensured by the requirement that∫

F

φ1(x, 0) φ0(x, 0) dx = 0. (3.15)

The pole structure in φ and v given by equations (3.9) and (3.12) allows the required
residues in (3.11) to be calculated and the asymptotic form of Φ as t → ∞ to be found.
The free-surface elevation then follows from (2.4) and, after some manipulation, it is
found that

η(x, t) ∼ Aφ0(x, 0)

[
1

2ω0

(dω0t sin ω0t + cω0t cosω0t + c sin ω0t)

+
1

ω2
0 − σ 2

(aω0 sin ω0t − bσ cos ω0t) +

∫ ∞

0

E(τ ) cos ω0(t − τ ) dτ

]

− 1

g
Re

[
σ (b − ia)φ(x, 0, σ ) e−iσ t + ω0(d − ic)φ1(x, 0) e−iω0t

]
as t → ∞.

(3.16)

The first group of terms in (3.16), with the trapped-mode potential φ0 as a factor,
corresponds to excitation of the trapped mode. The forcing at the trapped-mode
frequency ω0 through the terms involving c and d gives a resonance and there
are components of the free-surface oscillation which have an amplitude that grows
linearly with time. Because φ0 → 0 as |x| → ∞, at any particular t the resonance will
not be observed in the far field, but there is a non-decaying radiated wave at the
trapped-mode frequency given by the term in φ1. The transient E(t) in the forcing
velocity excites a non-resonant trapped mode. The forcing at a frequency σ �= ω0,
identified by the terms involving a and b, excites a steady oscillation of the trapped
mode which will be localized to the vicinity of the structure and also generates a
radiated wave at frequency σ through the heave potential φ(x, z, σ ) at that frequency.
In § 5 these three types of forcing are discussed separately.

4. Numerical method
In § 5 and § 7 numerical solutions of the initial-value problem (2.1)–(2.7) will

be presented. The numerical method is an adaptation to this linear problem of
that described by Maiti & Sen (2001a, b) for the solution of nonlinear initial-value
problems.

For the purposes of the numerical calculations the problem (2.1)–(2.7) was made
non-dimensional by scaling all lengths by the depth h and time by

√
h/g (which is

equivalent to choosing g = h = 1). With these scalings the only changes are to the
sea-bed and the dynamic free-surface condition (2.2) and (2.4) in which h and g

should be set equal to one. Throughout this section all variables will be used in their
non-dimensional form.

The initial-value problem (2.1)–(2.7) is defined on a spatial domain that extends to
infinity in both horizontal directions. For computational purposes it is necessary to
truncate the domain to one of finite extent and Maiti & Sen (2001a, b) achieved this
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by introducing two rigid vertical walls. However, it is better to apply a scheme that
reduces reflections from the artificial boundaries. An effective scheme is described
by Clément (1996) in which rigid pistons at x = ±L, say, are combined with two
damping zones of width G occupying L − G < |x| < L; the pistons are most effective
at absorbing long waves and the damping zones are most effective with short waves.
For all of the computations reported here L = 15 and G = 5.

The piston boundary condition proposed by Clément (1996) is

∂Φ

∂x
(±L, z, t) = ∓

∫ 0

−1

∂Φ

∂t
(±L, ζ, t) dζ, −1 < z < 0, (4.1)

so that each piston is rigid and makes horizontal movements in response to the fluid
pressure on its surface. For long waves, in which the fluid motion is independent of
the depth, (4.1) reduces to

∂Φ

∂x
= ∓∂Φ

∂t
at x ± L, (4.2)

which are the Sommerfeld conditions for waves with speed one (equivalent to the
long-wave speed

√
gh when (4.2) is expressed in terms of dimensional quantities).

Clément (1996) does not describe how the conditions (4.1) are implemented within
his code. In the numerical code used here the piston conditions are applied by writing
(4.1) in the form

dq±

dt
= −u±(t) (4.3)

where u± is the velocity of the piston at x = ±L measured in the direction out of the
fluid domain, and

q±(t) =

∫ 0

−1

Φ(±L, ζ, t) dζ. (4.4)

Equation (4.3) is used to increment q± once u± have been determined in the manner
outlined below.

The damping zones are introduced by modifying the non-dimensional form of the
dynamic free-surface boundary condition (2.4) to be

∂Φ

∂t
= −η − ν(x)

∂Φ

∂z
on z = 0 (4.5)

where ν(x) = 0 for |x| � L − G, and ν(x) > 0 for L − G < |x| < L to ensure that the
additional term dissipates energy within the damping zone. As suggested by Clément
(1996), the form

ν(x) =
0.2

G3

[
3G(|x| − L + G)2 − 2(|x| − L + G)3

]
(4.6)

is adopted which, in particular, ensures that ν(±(L−G)) = ν ′(±(L−G)) = ν ′(±L) = 0.
The computational domain D is illustrated schematically in figure 1. There are two

surface-piercing structures denoted by S1 and S2 and three portions of the free surface
denoted by F1, F2 and F3. The bed at z = −1 is denoted by B and the pistons at
x = ±L by P±. An application of Green’s theorem over the whole of the domain
boundary ∂D to the velocity potential Φ and a Green’s function G gives

α(p)Φ(p) =

∫
∂D

[
Φ(q)

∂G

∂nq

(p, q) − G(p, q)
∂Φ

∂nq

(q)

]
dsq, p ∈ ∂D, (4.7)
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F1 F2 F3

S2S1

D

B

P+P–

Figure 1. The computational domain.

where the normal derivatives denoted using nq are directed out of the domain, α(p)
is the interior angle at p, and

G ∼ 1

2π
log Rpq (4.8)

as the distance Rpq between p and q tends to zero. The Green’s function G is chosen
to be a simple source together with its image in the bed B so that the integration
over B in (4.7) vanishes.

At the beginning of a time step ∂Φ/∂n is known on S = S1 ∪ S2 through (2.3) and
it is assumed that Φ and η are given on F = F1 ∪ F2 ∪ F3 and q± are given on P±
(they are all zero initially). The unknowns are the piston velocities u±, Φ on both P±
and S, and ∂Φ/∂n on F . The numerical scheme used to determine approximations to
these unknowns is as follows. Nodes are distributed over the boundary ∂D\B and the
variations in Φ , ∂Φ/∂n, and the geometry, are described in terms of cubic splines. A
cosine spacing was used to distribute the nodes on each portion of the boundary so
that they are more concentrated near corner points. The details of the representation
in terms of cubic splines are given by Sen (1995) and are not repeated here. The cubic-
spline representation is used to discretize (4.4) and (4.7) in terms of the nodal values
of Φ and ∂Φ/∂n (including u±) and then these equations, augmented by continuity
of Φ at all intersections of the boundary portions, can be used to determine the
unknowns listed above. It is worthy of note that in this linear problem the coefficient
matrix obtained in the discretization of (4.7) does not change with time and need
only be computed once. To proceed to the next time step the conditions (2.5) and
(4.5) are used to increment η and Φ on the free surface, and (4.3) is used to increment
q±. The time stepping was carried out using the fourth-order Runge–Kutta method.

It is well-known that when boundary integral equations are solved for normal
derivatives significant errors can arise near any corners. An important feature of the
solution of (4.7) by the method used here is the control of such errors in the values of
∂Φ/∂n. The cubic representation of the variation in the unknowns, the distribution
of the nodes using cosine spacing, and the imposition of continuity of velocity at the
corners (see Sen 1995) all help keep these errors within acceptable bounds. This is
particularly important when time-stepping is involved as any errors in the solution
of the integral equation will accumulate over time.

5. Results for a pumping-mode trapping structure
The first set of results described here concern the forced heave motion of the

trapping structure shown in figure 2. Following the inverse procedure given by
McIver (1996), applied here in finite depth, this structure was obtained from the flow
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Figure 2. A trapping structure for source positions x0 = ±πh/8 corresponding to kh = 4.
The positions of the sources are marked by filled circles.

field due to two oscillatory sources placed at x0/h = ±π/8. For a trapped mode
it is required that there are no waves as |x| → ∞ and the construction ensures
this provided the oscillation frequency ω0 =

√
(4 tanh 4)g/h ≈ 1.99933

√
g/h; this

corresponds to kh = 4 where k is the wavenumber of free waves of frequency ω0 in
water of depth h. A trapping structure is obtained from any streamlines of the flow
that separate the singular points of the flow field from infinity. In the case shown
in figure 2 the particular streamlines chosen are those that emanate from the free
surface at x/h = ±3π/16. For the above choices of source positions and frequency,
the fluid motion between the structural elements is a ‘pumping’ mode without nodes.

In figures 3, 5, 6, 8 and 11, the free-surface elevation η(x, t) is given as a function
of time for two particular values of x; in part (a) of each of these figures x = 0, the
mid-point between the two structural elements, and in part (b) x/h ≈ 5, which for
convenience is referred to as the far field. The times are scaled by T =

√
h/g.

Figure 3 gives the free-surface elevation as a function of time resulting from a
displacement of the trapping structure given by

S(t) = αh(t/T )3 e−t/T (5.1)

for some arbitrary constant α  1 (the velocity V (t) = S ′(t) so that a = b = c = d = 0
in (3.8)). In this case the structure returns to its equilibrium position as t → ∞ in a
prescribed fashion. (It is worth noting that this scenario is not equivalent to giving
the structure an initial displacement and then releasing it, an example of which is
discussed by Maskell & Ursell 1970. In that case the coupled motion of the body and
fluid would need to be found.) The factor of t3 is included to ensure that there is no
discontinuity in either the velocity or the acceleration as the structure begins to move.
Between the structures the asymptotic trapped mode is quickly established and, in
figure 3(a), a steady oscillation of the free surface is observed as the trapped mode
does not give any radiation of energy to infinity. This trapped mode decays rapidly
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Figure 3. Free-surface elevation η as a function of time t for a trapping structure after a
transient disturbance: (a) mid-point, (b) far field. The figures compare the numerical solution
(———) with the asymptotic solution (– – – –).

0 5 10 15–5–10–15

0

1
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x/h

η
/(
α

h)

Figure 4. Free-surface elevation η at time t = 15T as a function of x for a trapping
structure after a transient disturbance.

away from the structural elements and hence at the far-field point, figure 3(b), the
motion dies away after the waves arising from the initial disturbance have propagated
through. The spatial variation of the free surface at time t = 15T is shown in figure 4.
The initial disturbance that radiates away is clearly seen. The small length of free
surface between the structures (the trapped mode) has an elevation η ≈ 0.83αh at
this time and appears as a dot in the figure.

The results for figure 3 can be contrasted with those shown in figure 5 for two
half-immersed circular cylinders whose free-surface intersections coincide with those
of the trapping structure shown in figure 2. There is no general uniqueness theorem
for this geometry to rule out the existence of trapped modes, although Linton &
Kuznetsov (1997) do show that, for a fixed configuration of cylinders, there are
certain frequency bands which are free of trapped modes. However, the numerical
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Figure 5. Free-surface elevation η as a function of time t for two half-immersed circular
cylinders after a transient disturbance: (a) mid-point, (b) far field.

results shown in figure 5, for the two cylinders given the vertical displacement (5.1),
do suggest that for this configuration of cylinders there are no trapped modes at
any frequency that can be resolved by the discretization of the equations because, in
contrast to figure 3(a), the numerical results of figure 5(b) indicate that there is no
steady oscillation established between the cylinders (the discrete Fourier transform of
this time signal also shows only a single peak frequency). The initial disturbance does
set up a fluid oscillation between the cylinders but this decays slowly due to wave
radiation, and this continual process of wave radiation to the far field can be seen in
figure 5(b). The decay of fluid oscillations generated in this way and their frequencies
of oscillation are discussed further in § 6.

Figures 6–8 give results for the trapping structure of figure 2 when it is forced to
oscillate vertically with a velocity

V (t) =

{
1
2
(1 − cos(πt/tm))αhω cos ωt, 0 � t < tm,

αhω cos ωt, t � tm,
(5.2)

which for t � tm corresponds to a displacement S(t) = αh sin ωt . The additional
factor in the definition of V (t) for 0 � t < tm is included to ensure that there are no
discontinuities in velocity and acceleration at t = 0 and t = tm. For the calculations
reported here the choice tm = 4T was made.

The results of figures 6 and 7 are for an oscillation frequency ω = ω0, the trapped-
mode frequency (so that a = b = d = E(t) = 0 in (3.8)). This is the resonant case
and the leading-order asymptotics as t → ∞ in (3.16) involve an oscillation at the
frequency ω0 with an amplitude that grows linearly with time t . This oscillation
involves the trapped-mode potential which decays to zero as |x| → ∞ and, hence, the
growing oscillation is observed between the structures (figure 6a) but not in the far
field (figure 6b). A forced oscillation of the structure at the trapped-mode frequency
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Figure 6. Free-surface elevation η as a function of time t for a trapping structure forced to
oscillate at the trapped-mode frequency ω0: (a) mid-point, (b) far field. In (a) the numerical
solution (———) is compared with the leading-order asymptotic solution (– – – –) whilst
(b) shows only the numerical solution.
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Figure 7. Free-surface elevation η at time t = 50T as a function of x for a trapping
structure forced to oscillate at the trapped-mode frequency ω0.

does involve radiation of waves to the far field, through the term in (3.16) that
involves φ1, and this can be seen in figure 6(b) after about t = 32T . The features
before this time arise from the transient effects associated with the initial condition.
Only the terms in the asymptotic solution (3.16) that have linear growth in t are easily
computed so comparisons in figure 6 are restricted to these terms.

For this resonant case, the free-surface elevation η at time t =50T is plotted
against x in figure 7. The vertical scale is truncated in order to show clearly the wave
motion on the outer portions of the free surface. Adjacent to the structure there is
a large-amplitude standing-wave motion, that at this time extends up to η ≈ 17αh,
due to the resonant trapped mode. As this mode decays with increasing |x| the wave
radiation at frequency ω0 due to the term φ1 in (3.16) becomes apparent, although at
this time it does not fully extend to the edge of the damping zone at |x| = 10h.
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Figure 8. Free-surface elevation η as a function of time t for a trapping structure forced to
oscillate at a frequency σ �= ω0: (a) mid-point, (b) far field.
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Figure 9. Free-surface elevation η at time t = 100T as a function of x for a trapping
structure forced to oscillate at a frequency σ �= ω0.

The results of figures 8 and 9 are for an oscillation frequency ω = σ �= ω0,
where σ has been arbitrarily chosen as π/2T (so that b = c = d = E(t) = 0 in (3.8)).
For large time the fluid response now contains two oscillatory components, one
at the forcing frequency σ and one at the trapped-mode frequency ω0. The σ

component of the asymptotic solution is just the standard frequency-domain solution
which involves wave radiation to infinity. The ω0 component is a trapped mode
that decays with distance from the structure. Hence, the free-surface elevation in
figure 8(a), measured between the structures, contains significant contributions from
both frequencies. However, in the far field, shown in figure 8(b), the wave radiation
with frequency σ is dominant. It is apparent that, for a structure that supports a
trapped mode, almost any initial condition will lead to persistent fluid oscillations at
the trapped-mode frequency ω0 in addition to oscillations at the forcing frequency σ .

The spatial variation of the free-surface elevation η at time t = 20T is shown in
figure 9. Again, the vertical scale is truncated in order to show the wave motion on
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the outer portions of the free surface. By this time wave radiation at the frequency σ

is well established, and the attenuation of the wave train due to the damping zone in
10h < |x| < 15h and the pistons at |x| =15h is clearly apparent.

6. Decay of fluid oscillations
Of some practical significance is the sensitivity of the results to geometrical

perturbations of a trapping structure away from a shape that supports trapped modes.
It has already been seen in figure 5 for a configuration of two half-immersed circular
cylinders, which (probably) does not support trapped modes, that an oscillation
between the two structures is readily excited but that its amplitude decays with
time. Here the perturbation of a trapping structure into two-half immersed cylinders
is investigated in detail. In particular, an investigation is made of the effects of
such perturbations on the decay rate of fluid oscillations in the time domain or,
equivalently, on the position of a simple pole in the frequency-domain potential.

The structural perturbations were made in the following way. The surface of the
right-hand element of a trapping structure is denoted by r = ft (θ) (see, for example,
figure 2) and the surface of the right-hand semicircle in a pair by r = fc(θ), where r

and θ are polar coordinates with origin at the centre of the free-surface intersection,
0 � θ � π and fc(0) = ft (0) and fc(π) = ft (π). A family of structures, all having the
same intersection with the free surface, is given by

r = χft (θ) + (1 − χ)fc(θ) (6.1)

where χ is a real number in the interval [0, 1]. Clearly, χ = 1 recovers the trapping
structure and χ = 0 the semicircle. The left-hand element of a pair of structures is
obtained by reflection in x = 0.

As already noted in § 3, the existence of a symmetric trapped mode for a given
structure implies that in the complex frequency domain the heave potential has a
pole on the real axis. As the structure is perturbed away from one that supports
a trapped mode the pole moves into the lower half-plane and becomes a so-called
‘complex resonance’ or ‘scattering frequency’. Such frequencies have been investigated
in the context of acoustic-wave scattering by Lenoir, Vullierme-Ledard & Hazard
(1992) and the generation of complex resonances due to geometric perturbations
of a trapping structure in an acoustic waveguide has been studied analytically by
Aslanyan, Parnovski & Vassiliev (2000). In the context of water-wave problems the
effect of the complex resonances on the hydrodynamic coefficients of ‘near-trapping’
structures has been studied by Linton & Evans (1992), Martin & Farina (1997) and
Newman (1999).

Suppose that the frequency-domain heave potential φ(x, z, ω) for a structure has a
pole at ω = ω0 − iε with ω0 > 0 and ε � 0, so that

φ(x, z, ω) ∼ ϕ0(x, z)

ω − (ω0 − iε)
as ω → ω0 − iε. (6.2)

It is assumed here that any other poles that may exist are sufficiently far from the
real-ω-axis to be negligible in the determination of the large-time asymptotics. Here
only a transient forcing V (t) = E(t) is considered so that the Fourier transform v(ω)
of the forcing velocity has no poles. The contribution to the large-time asymptotics
from the pole in φ can be obtained from (3.5) by closing the contour of integration
around the pole in the fourth quadrant. The detailed analytical structure of φ(x, z, ω)
in the complex-ω-plane is unknown so that the contribution to the asymptotics from
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Time Frequency

χ ω0 ε ω0 ε

0 2.17 0.0124 2.17 0.0127
0.2 2.14 0.0082 2.14 0.0083
0.4 2.11 0.0046 2.11 0.0046
0.6 2.08 0.0020 2.08 0.0020
0.8 2.04 0.0005 2.04 0.0005
1.0 2.00 0.0000

Table 1. Location of complex resonances for a perturbed trapping structure obtained from
the time- and frequency-domain calculations.

the remaining integral cannot be calculated. However it may be shown that Φ does
not contain any algebraic decay with time, in contrast to the transient vertical motion
of an unconstrained cylinder in infinite depth fluid (see Ursell 1964). Such algebraic
decay would arise in (3.5) as a result of the behaviour of φ as ω → 0. It can be
deduced from Bai (1977) (see also McIver & Linton 1991) that

φ(x, z, ω) ∼ 1

iω

∞∑
n=0

(iω)nφn(x, z) as ω → 0, (6.3)

where each φn is real valued, and for the forcing (5.1) the velocity V (t) has the Fourier
transform v(ω) = −6iω/(1 − iω)4. Repeated integration by parts in (3.5) then shows
that Φ(x, z, t) contains no powers of t in its asymptotic expansion as t → ∞. (This is
true for all forcings V (t) such that

v(ω) ∼
∞∑

n=1

cn(iω)n as ω → 0, (6.4)

where the cn are real, provided that v(ω)φ(x, z, ω) = o(1) as ω → ∞.) This result and
the numerical computations presented here suggest that the leading-order contribution
to the large-time behaviour does arise from the residue at the pole so that

Φ(x, z, t) ∼ −2 Re
{
iv(ω0)ϕ0(x, z) e−iω0t

}
e−εt as t → ∞. (6.5)

In general this is a decaying oscillation but when the structure supports a trapped
mode, so that ε = 0, then the oscillation persists for all time.

The values of ω0 and ε may be estimated from the results of a time-domain calcu-
lation (like that in figure 5) as follows. First, the times of the local maxima in the free-
surface elevation were obtained (the first five maxima were omitted to reduce the
effects of the initial transient). The frequency ω0 was found from the average of the
times between successive maxima. The decay constant ε was found from the gradient
of a straight line fitted to the logarithms of the free-surface maxima as a function of
time. The results of these time-domain calculations are given in table 1 for a series of
structures parameterized by χ , which was introduced in equation (6.1).

The location of a complex resonance may also be calculated from the frequency-
domain problem and a direct method is described by Hazard & Lenoir (1993).
However, provided the pole is close to the real axis, a good estimate of the location
of a complex resonance may be obtained from a standard frequency-domain code
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Figure 10. Non-dimensional added mass µ (———) and damping ν (– – – –) as a function
of non-dimensional frequency Ω = ω

√
g/h for two half-immersed circular cylinders.

for the calculation of hydrodynamic coefficients at real frequencies. If there is a pole
in the heave potential at ω = ω0 = ω0 − iε, then there will be a corresponding pole in
the complex force coefficient so that

µ + iν ∼ −A
ω − (ω0 − iε)

as ω → ω0 − iε. (6.6)

Here µ and ν are respectively the non-dimensional added-mass and damping
coefficients and A is a real, positive constant which ensures that ν > 0 (something
that is required from energy considerations). According to the asymptotic form of
µ + iν in equation (6.6), on the real-ω-axis there is a local maximum in ν at ω = ω0

and a local maximum and a local minimum in µ at respectively ω = ω0 ∓ ε. Typical
added mass and damping curves near a resonant frequency are shown in figure 10 (the
structural geometry is the pair of semicircles) and the features noted above are clearly
observed. It is a simple matter to obtain the positions of the local extrema and hence
compute approximate values for ω0 and ε; the results of such calculations are shown
in table 1. All of the frequency-domain calculations shown in table 1 were made using
a boundary-element method with thirty panels on each structure in a pair and with
additional panelling of the interior free surfaces to remove irregular frequencies. It
is clear from table 1 that, for these near-resonant situations, an important aspect of
the behaviour in the time domain is readily predicted by examination of standard
frequency-domain calculations.

7. Results for a sloshing-mode trapping structure
The results presented so far have been related to a trapping structure for which

the trapped-mode fluid motion between the elements of the structure is a pumping
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Figure 11. Free-surface elevation η as a function of time t for a sloshing-mode trapping
structure after a transient disturbance: (a) mid-point, (b) far field.

motion without free-surface nodes. The method of construction used to generate
this structure may be used to generate other trapping structures for which the fluid
motion between the structures does have nodes, and one such example is studied here.
Oscillatory sources are placed at x0/h = ±3π/8 and, as before, waves are eliminated
at infinity provided that the oscillation frequency ω0 =

√
(4 tanh 4)g/h. It should be

emphasized that the construction only guarantees the existence of a single trapped
mode and it has frequency of oscillation ω0. For the computations reported here the
particular trapping structure is formed from the streamlines that emanate from the
free surface at x/h = ±9π/16. The appearance of the two elements of the trapping
structure is similar to those shown in figure 2, but they are more widely spaced. The
trapped mode is symmetric about x = 0 and has two free-surface nodes between the
structural elements; to distinguish this from the pumping mode discussed earlier it
will be referred to as a ‘sloshing’ mode.

Time-domain results for the sloshing-mode trapping structure, with a transient
forcing in the form of equation (5.1), are given in figures 11 and 12. Based on the
results presented in § 5, it might have been expected that the motion between the
two structural elements would settle to an oscillation at the trapped-mode frequency.
However, from figure 11(a) this is clearly not the case even when the far-field plot
figure 11(b) indicates that there is very little, or no, radiation. The snapshot at time
t = 98T shown in figure 12(b) confirms that the fluid motion contains components
other than the constructed trapped mode because, at this particular time, there
are four zero crossings of the mean water level instead of the two found in the
constructed trapped mode. It seems that, in addition to the trapped mode that has
been constructed at Ω = ω0/

√
g/h ≈ 2.0, there is a second mode that is either trapped

or radiates very little energy.
The oscillation frequency of this second mode is estimated from the discrete Fourier

transform (Press et al. 1992, § 12.1) of the time signal in figure 11(a), continued to
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Figure 12. Free-surface elevation η at times (a) t = 9T and (b) t = 98T as a function of x
for a sloshing-mode trapping structure after a transient disturbance.
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Figure 13. Discrete Fourier transform of the free-surface elevation shown in figure 11(a).
Here |un| is N−1/2 times the amplitude of the Fourier component with index n, where N is the
number of samples in the signal, and the numbers within the plot are the non-dimensional
frequencies Ω = ω/

√
g/h corresponding to the peaks at n = 19, 65 and 90.

t = 200T , and this is shown in figure 13. The index n used in that figure is related to
the frequency Ω through

Ω =
(n − 1)2πT

N �t
, (7.1)

where �t is the sampling interval and N the number of samples in the signal. There
are three dominant frequencies: a low-frequency oscillation at Ω ≈ 0.6, the trapped-
mode oscillation at Ω ≈ 2.0, and the higher-frequency oscillation at Ω ≈ 2.8 (there
are other, much smaller, peaks at higher frequencies not included in this plot). The
Fourier transform of the signal for 50T � t � 200T (not shown here) shows only two
large peaks at Ω ≈ 2.0 and 2.8 with a virtually zero transform in the low-frequency
range. It is the combination of oscillations at Ω ≈ 2.0 and 2.8 that is observable for
larger times in figure 11(a). The low-frequency oscillation at Ω ≈ 0.6 is a pumping
motion that dies out rapidly due to wave radiation. This motion is apparent for



Excitation of trapped waves 159

0

0.5

10

0 2.01.0 3.02.5

Ω

µ,ν

1.5
–10

Figure 14. Non-dimensional added mass µ (———) and damping ν (– – – –) as a function
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smaller times in figure 11(a), and also in the snapshot of the free surface shown
in figure 12(a), where the higher-frequency oscillations are ‘riding’ on the pumping
motion.

As discussed in § 6, there is a strong link between the fluid motion as a function
of time and variations in the added-mass coefficient that arises in the frequency-
domain problem. A very rapid change in the added mass from large positive values
to large negative values is associated with persistent oscillations in the time domain.
Numerically computed values for this added mass, and for the corresponding damping
coefficient, are shown as a function of frequency in figure 14 for the sloshing-mode
trapping structure. There are very rapid changes in the added mass around Ω = 2.0
and 2.8 corresponding to the persistent oscillations noted in the time domain. There is
also a, less dramatic, region of negative added mass around Ω = 0.6 which corresponds
to the highly damped pumping motion. In addition, there are very localized anomalies
in the damping coefficient around Ω = 2.0 and 2.8, but these cannot be distinguished
on the scale of figure 14.

It has been suggested (Evans & Porter 1998) that there is a correlation between
the existence of a trapped mode for a two-element structure, and a zero of the
transmission coefficient T, at a nearby frequency, for an isolated element of that
structure. Trapped modes arise when there is repeated perfect reflection of a wave
between two such elements. Numerical computation of T for the structural element
under discussion here shows that T has local minima very near zero for Ω ≈ 1.97
and 2.81 which are indeed close to the ‘trapped-mode’ frequencies found above.

8. Conclusion
The forced oscillations of a structure that supports a trapped mode have been

examined in the time domain using asymptotic and numerical methods. Almost any
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forcing, whether sustained or transitory, will excite the trapped mode and in the
absence of friction it persists for all time.

Oscillatory forcing at the trapped-mode frequency produces fluid oscillations which
grow with time but decay with space, as well as a certain amount of radiation of
energy to infinity at the trapped-mode frequency. In contrast to this, a similar forcing
at a frequency that differs from the trapped-mode frequency does not give rise to any
growing oscillations, but rather generates a localized oscillation at the trapped-mode
frequency as well as radiation at the forcing frequency. A transient forcing of the
structure generates a bounded, localized oscillation at the trapped-mode frequency,
which does not decay with time. This behaviour means that the usual assumption
of linear water-wave theory, namely that after sufficient time there is only a steady-
state oscillation at the forcing frequency, is incorrect for a trapping structure. For
structures that support trapped modes, almost any initial condition or forcing will
lead to persistent fluid oscillations at both the trapped-mode and forcing frequency.
In particular, trapped modes will be excited by an incident mixed sea state.

An investigation was also made into the connection between the time- and
frequency-domain solutions for both trapping and near-trapping structures. The
trapping structure was given a sequence of perturbations which transformed it
into two semicircular cylinders and the time-domain equations were solved for a
transient, vertical forcing of the structure for each member of the sequence. For small
perturbations of the trapping structure, localized oscillations are produced which have
a frequency which is close to that of the trapped mode but with amplitude that decays
slowly with time. Numerical estimates of the frequency and the rate of decay of the
oscillation were made from the time-domain calculations. These values correspond
to the real and imaginary parts of a pole in the complex force coefficient associated
with the heave potential. An estimate of the position of this pole was obtained from
calculations of the heave added mass and damping and good agreement with the
time-domain results was found.

The calculations described in the previous paragraph are for a trapping structure
with two elements that are quite close together. Further time-domain calculations
for a trapping structure with more widely separated elements reveal fluid oscillations
with two principal frequencies. These correspond to the constructed trapped mode
and a second mode that is either another trapped mode, or a very lightly damped
near-trapped mode. The numerical computations alone cannot distinguish between
these two cases and a proof of the existence of a structure that supports trapped
modes at more than one frequency has not yet been found.

This work was funded by grant number GR/M30937 awarded by the UK
Engineering and Physical Sciences Research Council.

Appendix
Here the form of the heave potential in the vicinity of the trapped-mode frequency

is derived for the structure illustrated in figure 2. This potential φ(x, z, ω) satisfies
Laplace’s equation, the body boundary condition (3.6), the free-surface condition
(3.7), a radiation condition, and has zero normal derivative on z = −h. Application
of Green’s theorem to φ and φ0 for ω �= ω0 yields(

ω2 − ω2
0

) ∫
F

φ0(ξ, 0)φ(ξ, 0, ω) dx = −g

∫
Γ

φ0(ξ, η) nη ds. (A 1)
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The right-hand side of (A 1) may be determined numerically and it is non-zero. It is
also independent of frequency, and so from the left-hand side of (A 1), there must
be singularities in φ at ω = ±ω0. A Laurent series expansion for φ in the vicinity of
ω = ω0 is sought in the form

φ(x, z, ω) =
ψ(x, z)

ω2 − ω2
0

+ φ1(x, z) + O(ω − ω0) as ω → ω0. (A 2)

This expansion is substituted into the governing equation and boundary conditions for
φ and the coefficients of powers of ω − ω0 are equated. Thus, ψ and φ1 individually
satisfy Laplace’s equation. The body boundary condition (3.6) splits into the two
conditions

∂ψ

∂n
= 0 and

∂φ1

∂n
= nη on Γ (A 3)

and the free-surface boundary condition (3.7) reduces to the two conditions

ω2
0

g
ψ − ∂ψ

∂η
= 0 and

ω2
0

g
φ1 − ∂φ1

∂η
= −ψ

g
on η = 0. (A 4)

Both ψ and φ1 satisfy a radiation condition at frequency ω0, which means that
the Laurent expansion for φ must be non-uniform in x, as the exact radiation
condition yields outgoing waves at frequency ω. However the function ψ satisfies the
homogeneous boundary value problem at the trapped-mode frequency ω0 and so it
must be a multiple of the trapped-mode potential,

ψ = Agφ0(x, z), (A 5)

which decays as |x| → ±∞. The strength A is determined from an expansion of (A 1),
and is given by

A =

−
∫

Γ

φ0(ξ, η) nη dξ∫
F

[φ0(ξ, 0)]2 dξ

. (A 6)

(Application of Green’s theorem to φ0 and the function 1 + ω2
0z/g shows that the

integral in the numerator may alternatively be written as∫
Γ

φ0(ξ, η) nη dξ =

∫ ∞

−∞
φ0(ξ, −h) dξ. (A 7)

This alternative form is particularly useful in water of infinite depth, as the integral
on the left-hand side of (A 7) is related to the coefficient of the vertical dipole in the
expansion of φ0 at large depths, and may be determined explicitly.) Substitution of
(A 5) into (A 4) shows that φ1 satisfies

ω2
0

g
φ1 − ∂φ1

∂η
= −Aφ0(ξ, 0) on η = 0. (A 8)

Thus φ1 satisfies a forced boundary value problem at the trapped-mode frequency.
From the Fredholm Alternative, the definition of A is sufficient to ensure existence
of a solution for φ1, and its uniqueness is guaranteed by the requirement of the
constraint in (A 1) that ∫

F

φ1(ξ, 0)φ0(ξ, 0) dξ = 0. (A 9)
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